IT88户外光学
 
  ||  夜视仪  ||  专业夜视仪  ||  红外热像仪  ||  激光测距仪  ||  双筒望远镜  ||  数码望远镜  ||  单筒观察镜  ||  天文望远镜  || 
所在位置:首页 > 天文望远镜 知识 > 自制天文望远镜图

请问自制天文望远镜的详细过程?

1. 回答人: 匿名 时间: 07-29 16:20:30
这个很难很难,你必须要有毅力,体力还有精力,而且动手能力一定要很强!这样才能做出来一个差不多但和正规品牌相比相差很远的反射望远镜。

首先准备一个工作台,有四肢腿的很稳固的木质平台,高度约0.8米。下来就是买两块厚度在130mm以上的两块高品质的普通玻璃,把它们裁成两块你需要多大口径的圆形,然后用双手摁着划圆磨制,等磨到了你需要的焦距时就停止,然后镀铝,就可以了、

你要准备一些磨制用的东西:301号,302号,303号金刚沙,307号,308号刚玉沙,还有抛光用的沥青,检验用的木板刻度尺(这个要自己制作),光电检验的装置(还要自己制作)。最后还需要镀铝,这个需要自己配置化学药品:亚硝酸铝,(或者氢氧化二氨合银),盐酸,硫酸氢钾,乙醇....等等等等。配置比例和药品购置都是两大难题!

以上所说如果进行顺利才只是个开始,只是物镜的制作,还有目镜的购置或制作,寻星镜的制作安装,45°平面镜的安装,望远镜镜筒的制作连接,最后还有支架,赤道仪经纬仪怎么办。这些都是 N 大难题。千辛万苦历尽艰难制作好以后,成像质量还不如正规品牌的十分之一,再想想你所花费的经历财力,到底不如买一个好,如果楼主真想做还可以继续提问,我可以告诉你具体过程。

2. 回答人: 匿名 时间: 07-25 14:39:31
建议不要自己制作,这不是一个人能够完成的,一般一个公司生产一个天文望远镜,会有研发部,设计部,制造部,没有你想的那么简单
牛顿式反射式天文望远镜制作

牛顿式反射式天文望远镜制作讲义(文字部分)
讲义编写:台大物理 吴俊辉,王绍权,陈宣槐,黄郁升
网址:http://www. phys.ntu.edu.tw/lclab
一,主镜的研磨
研磨的的磨粉大小从46,80,120,240,500,1000到2500,材料是氧化铝.因为镜子的材料BVC较软的缘故,所以磨粉号数可以两倍的速度更换(例:120->240).若是较用较硬的玻璃材料,一次就只能变1.5倍(例:120->180).
A. 工作平台:
因为磨程中多余的水和磨粉会流到桌上,故在桌子一角铺上报纸后再垫上橡皮垫,保护镜子与工具.
B. 研磨方式:
双手掌心的连线通过镜心,四指靠在镜边缘,握太外面或太里面(太上或太下)都不好施力,磨的时候掌心不能超过底下的工具.范围约前后1/6~1/4个直径,不能超过1/3,两手的力量最好一样,边磨边向下施力.前后磨的路径要直,不要左右晃.
C. 一个程序:
先进行一个小程序:前后来回磨4~6次,逆时针旋转镜子约 45度,握着镜子人顺时针转约30度.重复小程序至人顺时针走到底,再继续小程序,唯换成握着镜子逆时针转30度.重复至人逆时针走到底,即完成一个程序.
D. 程序与程序间:
工具逆时针转约45度.若感觉已无摩擦力,则要加磨粉和
1
水.把镜子拿离工具时,要注意不能让工具边缘磨到镜子中心,要注意:致命的刮痕都是在拿镜子的时候造成的.
E. 加磨粉:
磨粉一汤匙,用水将粉充分喷湿,喷散.镜子放上工具后,镜子的圆心绕工具的圆心绕几圈,使磨粉均匀后在开始磨.用奶粉的汤匙舀磨粉有异常的妙用,汤匙底部有小洞,可以慢慢的让磨粉流出来,这样便可以均匀且少量的洒在镜面上.当工具和镜面接触良好时,磨粉便要慢慢减少,因为颗粒越小的磨粉越容易粘成大的团块,易刮伤镜面
F. 要注意干的磨粉:
干的磨粉颗粒会凝结变大,会严重刮伤镜子,磨镜时不能使手上和镜子边缘干的磨粉掉到工作范围内.手脏不应搓手,而用水桶洗手的方式.
G. 测试曲率的方法:
三角仪的半径是2公分,测的时候要稍微移动位置,测到当地最高的值才是正确的(因三角仪的圆周一定是靠在镜面突起的部分).磨到2500的磨粉后,要用Ronchi test(做法见上学期报告)才能看出差别,因三角仪的精确度只有0.01公分.表面的均匀程度可用肉眼或辅以手电筒即可观察出来,换另一号磨粉前需要将表面都磨制均匀.
H. 修正曲率方式:
磨镜时的位移若小一点(1/6以下)是均匀的磨到整个镜面,同时改变整个镜子的曲率;大一点时(1/6~1/3)则是重点磨深,局部影响曲率.镜子在上工具在下时研磨到镜子中央,相反则研磨到边缘.例如镜子在上时用大的位移则会让中央部份磨深.依2照三角仪或Ronchi test测定的镜子曲率,来作不同的修正.
I. 环境的清洁:
换磨粉之前,或是前一次工作相隔时间长,就必须作清洁的工作.地板,磨镜的桌子,柜子都用抹布和除尘拖把仔细清过一遍,不能有前次的大磨粉残留,会刮伤镜片.镜子,工具和垫子也都用牙刷,牙膏仔细刷洗过.
用空罐子把磨粉分装,从小的开始再装大的,因为大磨粉里参有小磨粉也不会刮伤镜片.分装好的磨粉不要全放在一起,分开放置不同的柜子较不易污染.柜子还需要一个塑胶布来挡住,以免有外来颗粒入侵.使用时要用更小的药罐先分装,不要重复接触大罐子,使表面有磨粉的机率增加. 厨房纸巾和静电布要收藏在箱子里,要用时一次拿一张,以免沾上磨粉.换磨粉时最好也换一卷纸巾.
J. 防止镜边缘破碎:
用炒菜锅乘水和46号磨粉把镜子的边缘磨掉约4mm,用完后磨粉和剩下的水都不须清干净,这样湿润的磨粉较不易飞散,再直接放到测试桌下面的纸箱内收妥.要随时注意边缘会不会太尖,以防碰撞而破碎.
K. 若工具和镜子吸住推不开:
研磨时要随时注意水是否太少,不然工具和镜子间的摩擦力和吸附例会太大以致于分不开.解决办法有很多种.若从透明的工具看进去,中间的水还没有干掉,表示转不开是由于周围干掉,可从上面对工具中间加压,把中央有水的部分压开,分散附着力,同时在用手转(不能用扳开的方式,以防危险),就可以转开.若还不行,就表示整个水分都快干掉的,可以把镜子和工具一起放到约五十度热水中,利用两者膨胀系数的不同(BVC几乎膨胀系3数为零),即可拆开.
L. 刮痕:
通常是干掉的磨粉或是前一程序的残留磨粉造成的.当磨粉很细时,会飘散到空中,所以清洁工作要很彻底,甚至连身上都需要先用除尘纸擦过.若有刮痕,可用手电筒观察其深度,通常可以在下一个阶段的磨粉可以被淡化,但无法消除.只要不是太严重,事实上对光学表现不会影响太大.所以通常不会为了一条刮痕再增加该磨粉的磨程时间.
二,主镜的抛光
抛光通常和研磨一样需要很多个磨粉的流程,但这次我们只有用一种大小的氧化铯,所以花的时间会较长.此外,原来工具的玻璃材料对抛光来说太粗糙,所以要在原来工具的表面在铺上一层沥青.
A. 氧化铯磨粉:
因氧化铯比奶粉还要细,会粘着任何容器,所以不易用汤匙拿取.因此把它和水1比4溶在装西红柿酱的瓶子里,直接用磨粉水的形式代替分别加磨粉和水,使用时要先摇晃均匀,使瓶子底部没有磨粉沉淀.
B. 沥青工具的制作:
我们用有把柄的锅子和高山瓦斯炉将沥青融化.融化的沥青很像麦芽糖(这次用的是比较高级的沥青,外表是黄色的.沥青是混合物,其中成分的比例会影响他的软硬度和色泽),加热要用非常小的火,一来因为沥青的熔点很低,二来加温太高会产生非常多气泡,使液体成分蒸散而改变成分比例.表面的一层泡沫可
4
以用汤匙挑掉,一边加热一边要用筷子将底部融化的跟上层未熔的搅拌.
工具的边缘用厚胶带贴一圈,高出表面3公分左右,再把沥青倒入,量约1公分厚才足够,用筷子把气泡挑掉.约五分钟后(是沥青干的程度),用铁棍将表面压成格子状,把镜子表面涂满氧化铯溶液(镜子要稍微用吹风机加热,以免镜子和工具的温度相差太多让沥青瞬间凝固),压到工具上,人再压上去约15分钟,将沥青压成和镜子曲率一样.镜子拿开后用磨粉的附着状况判断曲率(通常是中央没被压到,所以中间会没有粉红色的磨粉黏着),曲率未到可放到热水中加热工具,然后再压一次. 压好后工具的边缘用榔头敲掉,使沥青的面积小于镜子,压的时候才不会有大于镜面的部份压不到而突起.沥青碎片可稍微清一下,但因质地很细,就算有残留也不会磨伤镜子.
C. 工作平台:
防滑垫因为有弹性会抵销力量,所以要换成用厚木板垫底,上面作四个木块刚好夹住工具,再用两个C型夹把木板固定在桌角.木块的高度要小于工具的,这样工具上的镜子才能有位移.工具和木块间的空隙用小的锲型木块塞住,磨的时候才不会前后动或是转动.
D. 抛光方式:
用氧化铯抛光时,附着力明显大于以前任何一种磨粉,非常难移动镜子.磨粉水很不容易流失,因为有沟槽的关系,所以就算磨一整圈也不用加磨粉水.最好都以镜子在上的方式抛光,这样若有大颗粒的东西才容易从工具的勾槽流掉,镜子在下容易刮伤.此时的位移只需要1/6,因为是整体抛光的关系,不用大位移来加强局部.因为镜子在上,所以边缘会比较难磨到,用直线来回磨几次后可改为W行的磨法,增加边缘磨的机会.
5
E. 沥青工具的校准:
隔一两天以上重新要磨之前都需要再校准工具的曲率,把工具放到热水加热,再用人的重量压20分钟.但施压的人不可左右晃动,否则工具的边缘曲率会太大超过预期,这样抛光的时候,边缘会接触不到,只有镜子中央被抛光.
F. 测试曲率的方法:
一开始可用Ronchi test测镜面和目标球面相差多少,再改变工具和镜子的位置,或是位移的大小来修正.最后用W型磨法抛物面化后(抛物面化只要约半小时,因球面和抛物面相差甚少),可用Foucault test测其抛物面化的程度.
三,一般预期工作成果
以口径32cm的镜片为例,主镜研磨和抛光的过程,研磨需约27个程序(46磨粉-3次,80磨粉-9次,120-7,240-2,500-2,1000-2,2500-2),抛光约20个程序,各需18到20个小时,因此实际的磨镜时数近40个小时可完成(不包含所有准备与清洁时间).镜面可能会有几处刮痕,但应不影响未来的整体表现.整体镜面的误差可用Foucault test的软体来计算,一般若控制在1/8个可见光波长以下,已算是非常优良的表现,本实验室的技术可达到1/20个可见光波长
的准确度约为25奈米.之后主镜镜面蒸镀时,镀铝约100 ~200nm两层,和一层二氧化硅作为保护.
望远镜本体:
大部分采用铝门窗的铝制材料,座台使用Dobsonian的设计,目镜座则用Crayford的设计,斜镜架,目镜架,主镜架都有三点微调6机制,可以调整斜镜目镜与主镜的平面倾斜度,以调整光轴.
望远镜能力
D(口径) = 31.1cm
F(焦距) = 146.75cm
F-ratio(焦比)= 4.72
P(集光力)= 1974
M(极限星等)= 14.7
FOV(视场)= 0.35度
解析力 = 0.41角秒
极限倍率 = 约44倍 ~ 550倍
适合搭配的目镜约33mm-3mm
注:关于制作过程之图片资料,可由以下网站下载:
http://jhpw.phys.ntu.edu.tw

3. 回答人: 匿名 时间: 07-23 13:22:23
自制天文望远镜的几种方法

第一种方法:现有以下材料:
焦距为120mm,口径为40mm的凸透镜*2
焦距为40mm,口径为25mm的凸透镜*2
口径为20mm的凹透镜*2
如果要倍率尽可能的大,镜片应该怎样搭配?问题补充:谢谢 wjj253465799 的帮忙,不过我没说清楚,*2是指2个,也就是说口径为40凸镜的有2个,口径为25的凸镜有2个,凹镜也有2个最佳答案:用焦距为120mm,口径为40mm的凸透镜*2 做物镜

口径为20mm的凹透镜*2做目镜
焦距为40mm,口径为25mm的凸透镜*2 放在最后做增倍镜第二种方法:2)制作方法

a)选择物镜和目镜。买来的物镜测定焦距,把物镜对着太阳,在镜片的另一侧放张白纸板,前后移动白纸板,使太阳在白纸板上成像清晰。用直尺量出镜片到白纸板的距离,这个距离就是镜片的焦距,为17.8厘米。目镜的焦距已测得,是2厘米。

b)设计镜筒。为了便于调节焦距,以适应视力不同的人观测,整个镜筒做成两节,一节是物镜镜筒,一节是目镜镜筒。它们都用黄纸板(马粪纸)制作。物镜镜筒的直径约等于物镜的直径,物镜镜筒的长度约等于物镜的焦距。目精镜筒的直径约等于目镜的直径,目镜镜筒的长度比目镜焦距长50~80毫米。目镜镜筒的外径等于物镜镜筒的内径,使得目镜镜筒既能插入物镜镜筒,又能贴得比较紧,便于前后调节焦距。

c)物镜镜筒的制作。先找一根长度稍长于物镜焦距、直径约等于物镜直径的圆管做芯柱。

物镜镜筒用黄板纸条卷绕两三层制作。先把黄板纸切成70~80毫米宽的纸条。其中准备做第一层的黄板纸条,一面涂上墨,等墨干透后就可以卷镜筒了。注意墨面朝里,以消除杂散光。

在芯柱上卷绕黄板纸条的时候,纸条一圈紧挨一圈,不能有间隙,也不能重叠。在镜筒的两端和纸条的接头处,要用涂有浆糊或胶水的牛皮纸固定好。第一层卷好后,在第一层外面涂上浆糊或胶水,然后卷绕第二层。为了粘得更牢,第二层的黄板纸条里面也涂上浆糊或胶水。第二层的卷绕方向和第一层相反。第三层的卷绕方向和第二层相反,和第一层相同。一般卷三层黄板纸就足够了。镜筒的最外面糊上一层牛皮纸。镜筒卷好后稍晾一会就要把芯柱抽出,然后竖直放在室内彻底晾干。

镜筒卷得比需要稍长一些,卷好晾干后再用锋利的刀截成需要的长度。

d)目镜镜筒的制作。找一根直径约等于目镜的圆管做芯柱。目镜镜筒的卷绕方法同物镜镜筒基本相同,但目镜镜筒的外径等于物镜镜筒的内径。当目镜镜筒外径卷绕到已经接近物镜镜筒内径的时候,通过糊牛皮纸来逐渐达到要求。

e)镜片的安装。这一程序较麻烦。根据镜片和镜筒的具体情况采用不同的方法。如图11,我们所制作的望远镜镜片直径小于镜筒内径。,为了把镜片固定在镜筒中,我们分不同情况附加镜片套筒。另外,在目镜镜筒的末端,加一段卷纸,以免整个目镜镜筒滑进物镜镜筒。

安装镜片的关键就在于使物镜和目镜的主光轴都落在镜筒的中心线上。这是我们制作望远镜的又一个难点。为此,在镜片没有完全固定好之前,进行了简单的调整。对于物镜,把初步装上物镜的物镜镜筒对着远处的灯光,在物镜镜筒上没有物镜的一端蒙上一层半透明纸,使远处灯光通过物镜成像在半透明的纸中央。然后不改变物镜镜筒的放置方向,转动镜筒,如果远处灯光的像始终落在半透明纸的中央,说明物镜的主光轴落在镜筒的中心线上。就可以把物镜固定下来。否则就需要适当调整物镜位置,直到符合要求为止。

物镜调整好之后,就把物镜镜筒的半透明纸撕掉,把初步装上目镜的目镜镜筒插入物镜镜筒内。整架望远镜仍然对准远处灯光,并用眼睛观测。前后调节目镜镜筒的位置,使远处灯光落在望远镜看到的视场中央。然后使物镜镜筒不动,单转动目镜镜筒,如果远处灯光始终在视场中央,说明目镜的主光轴落在镜筒的中心线上,至此可以把目镜固定下来。

一架简单的小型开普勒式折射望远镜就做成了。
物理书上有的第三种方法:1. 折射式望远镜
折射式望远镜的光学系统, 实质上与显微镜一样.二者都是由目镜观看物镜所造成的像.它们的差别是:望远镜是用来看长距离的大物体,而显微镜是用以观看眼前的小物体.
下图说明天文望远镜的构造和原理.物镜使物体O行成缩小的实像I.I"是I经由目镜所造成的虚像.与显微镜的情况相同,I"可以呈现於眼睛之近点与远点间的任一位置上.实际上,望远镜所观看的物体离仪器非常远,所以它造成的像I之位置几乎就在物镜的第二焦点上.此外,若I"这个像在无穷远处,则I位於目镜的第一焦点.因此,目镜与物镜间的距离(亦即望远镜的镜筒长度)便等於物镜与目镜的焦距之和.
望远镜的角放大率之定义为:最后的像I"对眼睛所张之角与物体对裸眼所张的角之比值.这比值可表为物镜与目镜的焦距之比,其推理方式如下.上图中,通过物镜第一焦点F1,并通过目镜第二焦点F2"的光线,用粗线画出以示强调.物体(未画出)对物镜所张的角是u,他对裸眼所张的角度也是这个值.此外,由於观察者的眼睛在焦点F2"右侧不远处,所以最后的像对眼睛所张的角等於u".ab与cd这两段距离显然相等,并等於像I的高度y".由於u与u"都很小,可以用它们的正切值代替它们(u=tanu).由F1ab与F2"cd两个直角三角形可得
因此,
於是,望远镜角放大率等於物镜焦距除以目镜焦距之商.负号显示所成的像是倒像.
2. 双筒望远镜
若这望远镜是用来做天文观测的,那麼倒像并非缺点;可是我们希望望远镜能形成正立的像.稜镜双筒望远镜(prism binocular)可以达成这目的,下图显示其剖视图,其中的物镜与目镜之间,有一对45°-45°-90°全反射稜镜.在稜镜斜面上发生的四次反射,把像倒过来,而成为正立像.
3. 反射式望远镜
反射式望远镜里,一凹面镜代替透镜作为物镜,如下图所示.这种装置在大型望远镜方面,有许多理论上及实际上的优点.反射面镜根本不会有色像差,而且消除它的球面像差比消除透镜的要容易多.镜面不须采用透明材料,而且反射镜可以做的比透镜坚固,因为透镜只能由边缘支持.世界上最大的反射式望远镜之镜面直径超过5公尺.由於像形成於入射光线所经区域的一部份,所以只有把入射光束的一部份挡掉,才能用目镜直接观看这个像;只有最大的望远镜才适於这麼做(否则光量太弱).图(b)及(c)显示别的装置法,它们是用反射面镜把像向侧方,或是经由原镜上的小孔反射出去.
4. 鉴别率 (resolution)
照相机镜头的鉴别率可定义为:像的每1 cm中,勉强可变认为分开的线之线数.假设某镜头之焦距为50 cm,鉴别率为100 条线/cm.则100 m外一物体上的分开2 cm的线条仍能辨识!
材料: 大凸透镜(物镜),小凸透镜(目镜),手电筒,厚纸板,胶水,尺等
步骤一: 将大凸透镜(物镜)固定,在透镜后方放置一纸片,以手电筒照射透镜,移动纸片观测透镜焦点.
步骤二: 重复步骤一,将大凸透镜(物镜)换成小凸透镜(目镜),观测透镜焦点.
步骤三: 设计一可变焦之望远镜.
步骤四: 以自制之望远镜观看尺之最小格线(0.1 cm),移动尺与望远镜间之距离,观察最远可辨识尺之格线的距离.
问题一: 试描述自制望远镜的成像图.
问题二: 请问两透镜的焦距为何 望远镜倍率为何
问题三: 请计算望远镜的鉴别率为何
请将上述问题分别进行实验并以制式格式撰写报告,并於第十五周上各时缴交.
注意:下课时,请将透镜取下,留给下组使用;望远镜筒可寄放在实验室.第四种方法: 一、镜身的装配
牛顿式反射望远镜的镜身(结构见下图)主要由镜筒、主镜、副镜和目镜构成,下面就分别说说镜筒、物镜座、副镜支架和目镜调焦座的设计与制作。

 镜筒
镜筒是光路中各大部件的支撑物,特别是要支撑重量较大的物镜和物镜座,因此必须有足够的强度。镜筒的内径一般比物镜直径大2~3厘米,以方便物镜的安装和调节。镜筒的长度一般至少等于物镜的焦距,如果太短,将来主镜焦点伸出镜筒会太长,除非副镜尺寸足够大,否则当用广角目镜观测时,视场边缘肯定会有光线损失。
如果找不到大小合适的金属或塑料筒做镜筒,那么可以因地制宜,根据自己所具有的加工能力来选材制作。如果附近工厂有卷板机,可以请人用1.5mm厚的铝板按需要的长度和直径卷成圆筒,接口处可焊接或拉铆(我的镜筒就是用这种方法做的,结实而且轻便,效果非常满意)。也可以请白铁匠用铁皮或1.5mm厚的铝板卷制镜筒,在筒口处弯边可以增加强度(张大庆先生用的就是这种方法)。杨世杰老师介绍过在圆柱型芯子上用多层厚纸条按相互交错了的方向卷制镜筒的方法,我以前尝试卷过直径10厘米的镜筒,强度很大,效果很好。但要卷直径大于20厘米的镜筒时,会有几个实际的困难:首先是芯子不好找,其次是随着镜筒直径的增加,手工卷制的工作量和难度也会加大,各层纸粘合不紧密时,镜筒的强度会受影响,很难支撑20厘米的物镜和物镜座,将来也很难接相机拍照。除了圆形镜筒,还可以考虑方形筒。很多爱好者用木板制作方形镜筒,对于能找到木匠的爱好者来说这也是一种不错的方法;辽宁的张健同学在98年第一期《星空观测者》上介绍过用铝合金型材制作方形镜筒的方法,也很有新意。
 物镜座
物镜座是自制望远镜中的一个重点,它不但要牢固固定物镜,同时还要允许物镜的指向可以在一定范围内调节,另外还有一点容易被人忽视的是,不能将物镜卡得太紧,否则物镜会产生形变,影响成像质量。
杨世杰老师介绍过两种物镜的固定方法。第一种是最简单的方法(下图A):找一个与镜筒内径相同的木板(底板),在上面相距120°的位置上贴上三块有弹性的泡沫橡皮或塑料垫片,把物镜放在上面,然后用三个金属片弯成的小钩将物镜固定在底板上(不要卡得太紧,以免物镜变形),最后用三个角铁把底板固定在镜筒上即可。这种方法制作简单,镜片固定牢靠,但物镜的指向只能安装时调节好,以后再想改变很麻烦。对于短焦比的望远镜,校准光轴是很重要而且时常需要做的事,所以我觉得不太合适用这种方法。第二种方法(下图B)首先将物镜固定在一个小板上,小板通过三个螺栓与底板相连,螺栓中间加上弹簧,通过调节底板背后的螺母可以很方便地调节物镜的方向。这种方法制作相对复杂些,但使用效果却非常好,也是现在十分流行并且使用最多的一种方法。

而随着物镜口径的增大,其重量也在增加,上述第二种方法中所用的螺栓和弹簧的强度必须增加,这最终会导致物镜座的重量随物镜口径的变大而急剧增加。因此对于较大口径的物镜,又有了一种新的固定方法。这种方法使用一块底板,没有小板,没有弹簧,但底板上却保留三个螺栓,螺母嵌入底板中,物镜片是直接放在螺栓的三个顶点上的,调节螺栓可以调节物镜的指向(螺栓顶点要打磨光滑,与镜片之间要垫上薄的耐磨物质,以防止划伤镜片);为防止镜片滑动,要在底板上钉三个小木块(防侧滑木块)挡在镜片边上(不可将镜片卡得太紧,应留有1~2毫米的间隙);为防止运输时物镜片翻倒(正常观测时镜筒开口都是朝上的,物镜重量落在三个螺栓上,不会翻倒),三个小木块上还要各加一个木片,木片末端要超出物镜边缘3、4毫米(见下图)。观测时,物镜片的底面落在螺栓的三个顶点上,侧面只与三个防侧滑木块中靠下部的两个接触,与三个防翻倒木片不接触,没有任何外力卡住物镜,因此物镜不会产生任何形变。

固定20厘米的反射镜片,用上述第二种和第三种方法都行。我选用的是第三种方法。实际制作时,底板可以选用1厘米厚的整块木板或多层胶合板制作,如果是方镜筒,可以直接将木板锯成方形,如果是圆镜筒,可以请人用线锯或自己直接用钢锯条锯出圆形。底板应比镜筒内径小1~2毫米,能在镜筒内方便地进出。为防止木板受潮,有条件的可以对它作浸蜡处理,至少也要刷一层油漆。调节物镜方向的螺栓可以到五金店买M5规格的,为防止划伤镜片,我在镜片背后与螺丝接触的地方贴了三层透明胶条;为防止螺丝的松动,我没有使用螺母,直接在底板上钻直径略小于螺丝直径的孔,将螺丝旋入,借助木头的弹性和张力,可以将螺丝紧固,同时借助改锥(起子)也可方便地对其进行调节。连接镜筒和底板的角铁必须牢固,我选用了2.5毫米厚、15毫米宽的角铁,用两个螺栓与底板连接(其强度比直接用木螺钉要大得多),与镜筒之间也用螺栓连接。镜筒上和角铁上钻的孔应注意位置对齐,孔径以刚好穿过固定螺丝为好,确保以后每次安装物镜座时物镜与镜筒的相对位置不变,为以后调节光轴打下良好的基础。防侧滑木块和防翻倒木片的制作可以根据实际情况采用不同的方法,注意要确保物镜的安全,同时要让物镜有一定自由活动的空间。
 目镜调焦座
目镜调焦座的位置是由主镜筒直径、主镜焦距以及主镜焦平面伸出主镜筒的距离决定的,可以按比例画图,然后从图上量出具体位置。
目镜调焦座要求能稳定支撑目镜,并可在一定范围内(2~3厘米)方便地调焦。它的轴心(也就是目镜的轴心)要求尽可能与主镜筒轴心垂直并相交,如果以后打算接相机拍照,那它还必须有足够的强度。
如果感觉到在圆形镜筒上固定目镜调焦座比较困难,可以分成两部分来做:首先做出一个平面,然后在此平面的基础上固定目镜调焦筒。
如何做出平面呢?到装修店找一小段铝型材,用螺栓固定在主镜筒外壁(如下图),是一种容易实现而且使用效果很好的方法。注意最好找厚度不小于1毫米的铝型材,这样其强度才有保证。

这里再介绍一种做平面的方法:在主镜筒的内壁固定一块托板(见下图)。一般主镜与镜筒之间有1~2厘米的间隙,所以不必担心托板和目镜调焦座会挡住主镜光线。

我采用的就是这种方法,托板由一块120毫米×100毫米×2毫米的钢板制成(见下图),两侧折弯,各打四个安装孔,然后在镜筒上打上相应的孔,就可以用螺栓将托板固定在镜筒的内壁上。考虑到将来会接照相机,托板上会受较大的力,所以安装孔较多,所用材料也较厚。如果发现目镜调焦筒轴心有些歪,可以改变各螺栓所用垫片的厚度。(图中有一个长条形的“副镜托杆安装孔”,这是为下一步安装副镜作准备的。)

有了平面,目镜调焦座就很容易固定了。可以用铝管车制一个法兰盘,然后用螺栓固定在平面上。至于调焦,可以使用抽拉调焦,调好后用顶丝固定,实际使用效果也不错。
 副镜支架
副镜的安装有两个基本要求,一是其方向、位置可以在一定范围内调节,这是为以后调整光轴作准备的;二是要固定牢靠,避免以后经常重新调整其位置的麻烦,使我们可以把更多的精力用在欣赏望远镜带给我们的美丽星空上。
下面介绍一种设计,它是以上文提到的托板为基础的,注意了副镜各方向的可调节性,同时兼顾了牢靠性,具体可参考下图。


所用四个零件草图如下:
装配方法如下:T型体的一面插入圆柱体的槽中,用一个M3螺栓连接T型体和圆柱体。将圆柱体和副镜托杆用连接件连接,副镜托杆的攻丝的一端用两个螺母固定在托板的副镜托杆安装孔中。
副镜托杆安装孔实际上不是孔而是槽,副镜托杆可以左右移动;连接件可以沿着副镜托杆上下滑动;圆柱体可以在连接件的孔中前后移动,左右转动;副镜可以绕圆柱体的螺栓转动以调节仰角。副镜指向的方便调节为以后光轴的精确调整打下了基础。
以上这种设计对加工条件要求较高,而张大庆先生的设计则要简洁一些。

找长铁片,两端弯90度联结镜筒;找一木块,一端中央锯夹缝,夹住长铁片,另一端锯成45度斜面;副镜夹形状为椭圆,与副镜大小相当,四边伸出四个爪,弯曲90度后可以抓住副镜;副镜夹用薄铁片剪成,通过两个木螺钉与木块联结。
这个设计用很普通的工具就可以完成,而且对主镜遮挡很少;只要加工精确,打孔时再适当留些余量,以后调整光轴也不成问题。
到此,镜筒的设计制作完成了。在使用之前,最好先取下主、副镜,在镜筒内壁均匀地喷一层黑色亚光漆(装饰材料商店有售,罐装,北京地区售价16圆左右),效果还可以。
二、镜架的制作
对于20厘米反射式望远镜,如果没有足够大的赤道仪,那么应该毫不犹豫地选择一种称为道布森结构的地平式支架。
这种结构是美国的约翰"道布森在七十年代发明的,简单、轻便、稳定、实用,早已风靡全球。
下面是道布森结构的分解草图。它主要有三个部分:回答者:jlm400 - 门吏 二级 1-12 16:27用焦距为120mm,口径为40mm的凸透镜*2 做物镜

口径为20mm的凹透镜*2做目镜
焦距为40mm,口径为25mm的凸透镜*2 放在最后做增倍镜


8厘米折射望远镜多年来一直是我拥有的最大的望远镜。在对星云状深空天体和暗弱彗星的观测中,越来越感觉到8厘米的口径太不够了。如何获得一架口径大、成像质量优良而且使用方便的天文望远镜呢?我最终选择了自制一架口径20厘米的牛顿式反射望远镜。
我在这里要特别感谢河南开封的张大庆先生。他精于制镜,多年来一直潜心寻彗,对天文同好则更是热心相助,我就是许许多多受到他帮助的人中的一个。他精心为我磨制了20厘米抛物面反射镜片,而且详细介绍了装配望远镜的经验,使我收益非浅。也是张先生在杂志上发表的多篇文章特别是《星空观测者》1998-3期上的《北风一吼,满天星斗—漫谈冷空气与天文观测》一文,让我觉得20厘米反射镜正是我所需要的望远镜,非常值得下功夫去做。
我前后花了3个月的时间,投资累积约800圆(这些钱可能还买不到一架8厘米地平式折射望远镜)完成了这架口径20厘米焦距107厘米的道布森结构的牛顿式反射望远镜。其实国内介绍怎样制作反射式望远镜的文章已经相当多了(杨世杰老师曾在《天文爱好者》上连载六期,系统介绍了反射望远镜的制作方法,另外,各地同好介绍制作经验的文章也常有发表),我写此文,对于没有制作反射镜经验的同好,是想说明在一般所能达到的加工条件下,到底花多少时间投多少钱可以得到一架什么性能的望远镜,对于制作过反射镜的同好,则希望可以交流经验,特别是在如何调整反射镜光轴方面,国内文章谈论的不够细致,我从互联网上借鉴了一些国外天文同好的经验,再加上我的实践体会,写出来与各位同好探讨。
本文的重点是镜身的装配和光轴的调校。有一些零件的加工用到了车工和钳工,如果不具备此条件,因地制宜使用别的方法,同样也能达到目的。另外,大口径短焦比的望远镜对光轴的准确度是很敏感的,而望远镜做好后如果拉到野外去观测,很难保证调好的光轴一点不受影响,所以设计望远镜光路中的每一个部件时,在保证稳固的基础上都力求做到可方便调节。
一、镜身的装配
牛顿式反射望远镜的镜身(结构见下图)主要由镜筒、主镜、副镜和目镜构成,下面就分别说说镜筒、物镜座、副镜支架和目镜调焦座的设计与制作。

 镜筒
镜筒是光路中各大部件的支撑物,特别是要支撑重量较大的物镜和物镜座,因此必须有足够的强度。镜筒的内径一般比物镜直径大2~3厘米,以方便物镜的安装和调节。镜筒的长度一般至少等于物镜的焦距,如果太短,将来主镜焦点伸出镜筒会太长,除非副镜尺寸足够大,否则当用广角目镜观测时,视场边缘肯定会有光线损失。
如果找不到大小合适的金属或塑料筒做镜筒,那么可以因地制宜,根据自己所具有的加工能力来选材制作。如果附近工厂有卷板机,可以请人用1.5mm厚的铝板按需要的长度和直径卷成圆筒,接口处可焊接或拉铆(我的镜筒就是用这种方法做的,结实而且轻便,效果非常满意)。也可以请白铁匠用铁皮或1.5mm厚的铝板卷制镜筒,在筒口处弯边可以增加强度(张大庆先生用的就是这种方法)。杨世杰老师介绍过在圆柱型芯子上用多层厚纸条按相互交错了的方向卷制镜筒的方法,我以前尝试卷过直径10厘米的镜筒,强度很大,效果很好。但要卷直径大于20厘米的镜筒时,会有几个实际的困难:首先是芯子不好找,其次是随着镜筒直径的增加,手工卷制的工作量和难度也会加大,各层纸粘合不紧密时,镜筒的强度会受影响,很难支撑20厘米的物镜和物镜座,将来也很难接相机拍照。除了圆形镜筒,还可以考虑方形筒。很多爱好者用木板制作方形镜筒,对于能找到木匠的爱好者来说这也是一种不错的方法;辽宁的张健同学在98年第一期《星空观测者》上介绍过用铝合金型材制作方形镜筒的方法,也很有新意。
 物镜座
物镜座是自制望远镜中的一个重点,它不但要牢固固定物镜,同时还要允许物镜的指向可以在一定范围内调节,另外还有一点容易被人忽视的是,不能将物镜卡得太紧,否则物镜会产生形变,影响成像质量。
杨世杰老师介绍过两种物镜的固定方法。第一种是最简单的方法(下图A):找一个与镜筒内径相同的木板(底板),在上面相距120°的位置上贴上三块有弹性的泡沫橡皮或塑料垫片,把物镜放在上面,然后用三个金属片弯成的小钩将物镜固定在底板上(不要卡得太紧,以免物镜变形),最后用三个角铁把底板固定在镜筒上即可。这种方法制作简单,镜片固定牢靠,但物镜的指向只能安装时调节好,以后再想改变很麻烦。对于短焦比的望远镜,校准光轴是很重要而且时常需要做的事,所以我觉得不太合适用这种方法。第二种方法(下图B)首先将物镜固定在一个小板上,小板通过三个螺栓与底板相连,螺栓中间加上弹簧,通过调节底板背后的螺母可以很方便地调节物镜的方向。这种方法制作相对复杂些,但使用效果却非常好,也是现在十分流行并且使用最多的一种方法。

而随着物镜口径的增大,其重量也在增加,上述第二种方法中所用的螺栓和弹簧的强度必须增加,这最终会导致物镜座的重量随物镜口径的变大而急剧增加。因此对于较大口径的物镜,又有了一种新的固定方法。这种方法使用一块底板,没有小板,没有弹簧,但底板上却保留三个螺栓,螺母嵌入底板中,物镜片是直接放在螺栓的三个顶点上的,调节螺栓可以调节物镜的指向(螺栓顶点要打磨光滑,与镜片之间要垫上薄的耐磨物质,以防止划伤镜片);为防止镜片滑动,要在底板上钉三个小木块(防侧滑木块)挡在镜片边上(不可将镜片卡得太紧,应留有1~2毫米的间隙);为防止运输时物镜片翻倒(正常观测时镜筒开口都是朝上的,物镜重量落在三个螺栓上,不会翻倒),三个小木块上还要各加一个木片,木片末端要超出物镜边缘3、4毫米(见下图)。观测时,物镜片的底面落在螺栓的三个顶点上,侧面只与三个防侧滑木块中靠下部的两个接触,与三个防翻倒木片不接触,没有任何外力卡住物镜,因此物镜不会产生任何形变。

固定20厘米的反射镜片,用上述第二种和第三种方法都行。我选用的是第三种方法。实际制作时,底板可以选用1厘米厚的整块木板或多层胶合板制作,如果是方镜筒,可以直接将木板锯成方形,如果是圆镜筒,可以请人用线锯或自己直接用钢锯条锯出圆形。底板应比镜筒内径小1~2毫米,能在镜筒内方便地进出。为防止木板受潮,有条件的可以对它作浸蜡处理,至少也要刷一层油漆。调节物镜方向的螺栓可以到五金店买M5规格的,为防止划伤镜片,我在镜片背后与螺丝接触的地方贴了三层透明胶条;为防止螺丝的松动,我没有使用螺母,直接在底板上钻直径略小于螺丝直径的孔,将螺丝旋入,借助木头的弹性和张力,可以将螺丝紧固,同时借助改锥(起子)也可方便地对其进行调节。连接镜筒和底板的角铁必须牢固,我选用了2.5毫米厚、15毫米宽的角铁,用两个螺栓与底板连接(其强度比直接用木螺钉要大得多),与镜筒之间也用螺栓连接。镜筒上和角铁上钻的孔应注意位置对齐,孔径以刚好穿过固定螺丝为好,确保以后每次安装物镜座时物镜与镜筒的相对位置不变,为以后调节光轴打下良好的基础。防侧滑木块和防翻倒木片的制作可以根据实际情况采用不同的方法,注意要确保物镜的安全,同时要让物镜有一定自由活动的空间。
 目镜调焦座
目镜调焦座的位置是由主镜筒直径、主镜焦距以及主镜焦平面伸出主镜筒的距离决定的,可以按比例画图,然后从图上量出具体位置。
目镜调焦座要求能稳定支撑目镜,并可在一定范围内(2~3厘米)方便地调焦。它的轴心(也就是目镜的轴心)要求尽可能与主镜筒轴心垂直并相交,如果以后打算接相机拍照,那它还必须有足够的强度。
如果感觉到在圆形镜筒上固定目镜调焦座比较困难,可以分成两部分来做:首先做出一个平面,然后在此平面的基础上固定目镜调焦筒。
如何做出平面呢?到装修店找一小段铝型材,用螺栓固定在主镜筒外壁(如下图),是一种容易实现而且使用效果很好的方法。注意最好找厚度不小于1毫米的铝型材,这样其强度才有保证。

这里再介绍一种做平面的方法:在主镜筒的内壁固定一块托板(见下图)。一般主镜与镜筒之间有1~2厘米的间隙,所以不必担心托板和目镜调焦座会挡住主镜光线。

我采用的就是这种方法,托板由一块120毫米×100毫米×2毫米的钢板制成(见下图),两侧折弯,各打四个安装孔,然后在镜筒上打上相应的孔,就可以用螺栓将托板固定在镜筒的内壁上。考虑到将来会接照相机,托板上会受较大的力,所以安装孔较多,所用材料也较厚。如果发现目镜调焦筒轴心有些歪,可以改变各螺栓所用垫片的厚度。(图中有一个长条形的“副镜托杆安装孔”,这是为下一步安装副镜作准备的。)

有了平面,目镜调焦座就很容易固定了。可以用铝管车制一个法兰盘,然后用螺栓固定在平面上。至于调焦,可以使用抽拉调焦,调好后用顶丝固定,实际使用效果也不错。
 副镜支架
副镜的安装有两个基本要求,一是其方向、位置可以在一定范围内调节,这是为以后调整光轴作准备的;二是要固定牢靠,避免以后经常重新调整其位置的麻烦,使我们可以把更多的精力用在欣赏望远镜带给我们的美丽星空上。
下面介绍一种设计,它是以上文提到的托板为基础的,注意了副镜各方向的可调节性,同时兼顾了牢靠性,具体可参考下图。


所用四个零件草图如下:
装配方法如下:T型体的一面插入圆柱体的槽中,用一个M3螺栓连接T型体和圆柱体。将圆柱体和副镜托杆用连接件连接,副镜托杆的攻丝的一端用两个螺母固定在托板的副镜托杆安装孔中。
副镜托杆安装孔实际上不是孔而是槽,副镜托杆可以左右移动;连接件可以沿着副镜托杆上下滑动;圆柱体可以在连接件的孔中前后移动,左右转动;副镜可以绕圆柱体的螺栓转动以调节仰角。副镜指向的方便调节为以后光轴的精确调整打下了基础。
以上这种设计对加工条件要求较高,而张大庆先生的设计则要简洁一些。

找长铁片,两端弯90度联结镜筒;找一木块,一端中央锯夹缝,夹住长铁片,另一端锯成45度斜面;副镜夹形状为椭圆,与副镜大小相当,四边伸出四个爪,弯曲90度后可以抓住副镜;副镜夹用薄铁片剪成,通过两个木螺钉与木块联结。
这个设计用很普通的工具就可以完成,而且对主镜遮挡很少;只要加工精确,打孔时再适当留些余量,以后调整光轴也不成问题。
到此,镜筒的设计制作完成了。在使用之前,最好先取下主、副镜,在镜筒内壁均匀地喷一层黑色亚光漆(装饰材料商店有售,罐装,北京地区售价16圆左右),效果还可以。
二、镜架的制作
对于20厘米反射式望远镜,如果没有足够大的赤道仪,那么应该毫不犹豫地选择一种称为道布森结构的地平式支架。
这种结构是美国的约翰"道布森在七十年代发明的,简单、轻便、稳定、实用,早已风靡全球。
下面是道布森结构的分解草图。它主要有三个部分:

 耳朵(上图左)
耳朵是望远镜在垂直方向旋转的轴,它可以用直径不小于10厘米的圆形塑料或圆形铝块制成,对称固定于镜筒重心处的两侧,可以直接固定在主镜筒上,也可以在镜筒外套上一个木框,耳朵固定在木框上(这样耳朵的位置可以调节,更有利于主镜的平衡)。
 箱子(上图中)
用木板制成,上部有两个“V”形槽,正好与耳朵配合,底部中心穿孔。
 底板(上图右)
用木板制成,均布三个凸块(可以用塑料块做),中心有轴。
使用时,箱子放在底板上,被三个塑料块支撑,底板上的轴穿过箱子底部的中心孔,这样,箱子可以绕底板的轴灵活而稳定地做360度水平转动;将镜筒的耳朵放在箱子的“V”形槽上,镜筒可以在90度范围内垂直转动。这样,道布森支架就做好了。
只要底板上三个塑料块分得较开,各接触面摩擦系数合适,道布森装置用起来非常顺手,找目标时望远镜转动灵活,找到目标后,一松手,望远镜不会有反弹或晃动。实际使用表明,即使在高倍率下,目标在目镜视场中仍然非常稳定。
不能自动跟踪是它的缺点,国外很多爱好者在它的两个轴上加了电机,通过计算机控制电机转速,实现了自动跟踪,而且效果不错,有兴趣的同好不妨一试。
三、光轴的调整
望远镜做好后,当我们满怀希望投入观测,却发现像质平平,甚至恒星都不能聚成一个点,这个时候先别怀疑镜子有问题,很可能问题仅仅出在镜片装配上,经过对光轴的重新调整,望远镜里展现出的可能是完全不同的景象。
抛物面反射镜的成像有个特点,在光轴上成像很完美,没有像差,但离开光轴就会有明显的彗差(星点带了小尾巴)。在光轴上,使用一般视场的目镜,视场中心的星点是很锐利的,实际上视场边缘的像差也不易察觉。而如果在光轴外,整个视场中的星点可能都不实,而且离光轴越远这一点越严重。
 怎样才算调好光轴了?
当反射镜的光学系统中的两个光轴:主镜(物镜)光轴和目镜光轴都经过副镜上的同一点,且被副镜反射后二者完全重合,也就是成了一个光轴,那么光轴就算调好了。
在缺乏检验手段时,可以通过实际观测来判断光轴是否调好。找一个大气宁静度较好的晴夜,用望远镜的最高倍率(用毫米表示的主镜的直径数)看一颗恒星(如果没有赤道仪则可以看北极星)。把星点放在目镜视场中心(以减少目镜带来的像差),仔细调整焦距,从焦点外调到焦点,然后调到焦点内。如果光轴调整没有问题,可以看到如下图所示的从左到右一系列图象(图中的圆环是光的衍射引起的,散焦后实际上还会看到副镜及其支架的影子,图中没有画出)。
在焦点上星像是否凝结得很实、很细、很锐利,散焦后衍射环是否是同心圆,这些都反映了望远镜的像质。如果散焦后可以看到几圈衍射环,但不象上图中那样完美,四周均匀地带有一些“毛刺”,这说明反射镜面的精度稍差,但光轴调整的还是好的。如果散焦后星点变成了一个小的扇形,而且在目镜视场中移动星象,扇形的发散方向不变,这说明望远镜的光轴需要调整了。
 光轴调整步骤及辅助工具
光轴调整可按如下步骤进行:
1. 调节目镜调焦筒使之垂直于主镜筒轴线
2. 调节副镜使之位于主镜筒轴线上
3. 调节副镜使之位于目镜调焦筒正下方
4. 调节副镜指向,使目镜光轴经副镜反射后指向主镜中心
5. 调节主镜指向,使其光轴与目镜光轴重合
以上只是调光轴的大致方法,具体操作的过程中会有一些问题,有时很难控制精度这里首先介绍几个辅助工具:
1. 带双十字线的窥管:

管的外直径同目镜接口直径,管的一端加盖,盖的正中心挖2mm直径的圆孔,管的另一端用白色棉线对称地拉上双十字线,两线间距3~4mm。管长用如下方法确定:从目镜调焦筒中放入窥管(窥孔在外),窥孔一端与目镜调焦筒外端口平齐,双十字线一端距副镜20~30mm。
做窥管的材料不限(如果你使用的是31.7mm目镜接口,可以考虑用柯达胶卷的黑色包装盒来做窥管),关键是插入目镜调焦筒后要稳固,不能晃动太大。双十字线要拉正,相交处的小正方形与窥孔的连线应该是目镜调焦筒的轴线。
2. 主镜中心定位点
剪一片直径5mm的黑纸,用两面胶准确地粘在物镜的正中心。(因为主镜的中心区域并不参与成像,所以这个黑点不会有负面影响)
3. 主镜筒开口处十字线
在主镜筒开口处用粗线拉十字线,要求两线相互垂直,交点过主镜筒轴线。(在主镜开口处拉上十字线可能会影响对副镜的操作,所以最好标记出十字线与镜筒的四个交点的位置,觉得十字线碍事时可以先把它拆下来,必要时再重新拉上。)
这三个工具制作并不复杂,但你很快会发现它们很有用。借助它们,现在我们可以开始一步一步地调整望远镜光轴了。
0.预调主镜指向
取下副镜,调节主镜后面的螺栓,直到从镜筒开口前看过去,十字线交点、物镜中心黑点、十字线交点在物镜中所成的像三者成一条直线时,表明主镜指向基本正确。(下面专门有一步是调主镜的,预先加这一步操作可以使下面的操作更容易。)
1. 调节目镜调焦筒使之垂直于主镜筒
将窥管装入目镜调焦筒中,从窥孔中观察,可以看到从窥孔到双十字线的连线(实际就是目镜调焦筒轴线)再延长,会与主镜筒壁交于某一点,标记出这一点,用尺子测量其位置,再参考目镜调焦筒在主镜筒的位置,我们就可以判断出目镜调焦筒是否与主镜筒垂直。
2. 调节副镜使之位于主镜筒轴线上
取下窥管,装上副镜,大致调节副镜指向,使眼睛从目镜调焦筒中可以看到经副镜反射所成的主镜的像,同时也应该可以看到副镜和十字线经两次反射后所成的像。从这些像中我们可以看出副镜和十字线的相对位置,如果副镜的圆心和十字线交点重合,说明副镜位于主镜筒轴线上,否则就需要做相应的调节。
3. 调节副镜使之位于目镜调焦筒正下方
从目镜调焦筒方向看进去,副镜显然已经位于调焦筒的下方,但经过这样看精度无法保证。此时,装入窥管,眼睛从窥孔看到的,最外圈是窥管的内壁(双十字线现在不起作用,可以不管),中间是副镜。副镜的外圆轮廓和窥管的内壁轮廓如果是同心圆,说明满足要求,否则要在主镜轴线方向调节副镜。(如果因窥孔太小、光线太暗而看不清楚,可以在窥管正对的主镜筒壁垫上一张白纸,如果窥管太细,看不到副镜的外圆轮廓,可以把窥管往外抽或缩短其长度。)
4. 调节副镜指向,使目镜光轴经副镜反射后指向主镜中心
在上一步的基础上,一面用眼睛从窥孔中观察,一面调节副镜指向,直到主镜在副镜中所成的像的外圆轮廓、副镜的外圆轮廓二者同心。
5. 调节主镜指向,使其光轴与目镜光轴重合
用手电筒照亮窥管的双十字线,眼睛从窥孔看进去,可以看到双十字线、主镜的中心点所成的像以及双十字线经两次反射所成的像。调节主镜背后的螺栓,使上述三者同心。
至此,反射镜光轴调节完毕。下面给出从窥孔中所能看到的图象,以供参考。

上述各个调节步骤中,根据副镜支架的不同设计,下一步操作会对前一步的结果带来或多或少的影响,所以必要时可以返回前面的操作,可能要有几次反复,最后才能得到满意的结果。第一次调节会费一些工夫,一旦调好后,只要副镜支架稳固,以后的工作就轻松得多,即使为了运输而将主镜重装,一般也只需调节主镜后的螺栓就行了,借助于窥管,可以很快将望远镜调整至最佳状态。
最后有一点需要补充说明,一般认为光轴与副镜的交点在副镜的中心。在长焦距的望远镜中可以认为如此,但在大口径、短焦距的牛顿式反射望远镜中,副镜的尺寸也较大,副镜长边的两端到目镜的距离已经不能再近似认为是一样的了,请看下面的示意图:

光轴相交于副镜的B点,而不是副镜中心所在的A点。这相当于副镜从中心位置向主镜方向和远离目镜的方向都有一个位移。这两个方向的位移量可以用如下公式计算:
位移量=副镜短边长/(4*主镜焦比)
例如我的望远镜副镜短边长35mm,主镜焦比为5,则两个方向的位移量都是1.75mm。
如果有此类短焦距的望远镜,需要把这种情况考虑进去。计算出位移量,在上述第2步调节中,应让副镜稍稍远离目镜方向;在第3步调节中,当我们看到副镜的外圆轮廓和窥管的内壁轮廓是同心圆时,实际上副镜已经向主镜方向有了位移,不需再额外做调节了。

参考资料:http://www.astron.sh.cn/ASTRONOMY/telescope%20home/article/20厘米反射镜.htm回答者:546547031 - 千总 四级 1-12 16:30用焦距为120mm,口径为40mm的凸透镜*2 做物镜

口径为20mm的凹透镜*2做目镜
焦距为40mm,口径为25mm的凸透镜*2 放在最后做增倍镜


8厘米折射望远镜多年来一直是我拥有的最大的望远镜。在对星云状深空天体和暗弱彗星的观测中,越来越感觉到8厘米的口径太不够了。如何获得一架口径大、成像质量优良而且使用方便的天文望远镜呢?我最终选择了自制一架口径20厘米的牛顿式反射望远镜。
我在这里要特别感谢河南开封的张大庆先生。他精于制镜,多年来一直潜心寻彗,对天文同好则更是热心相助,我就是许许多多受到他帮助的人中的一个。他精心为我磨制了20厘米抛物面反射镜片,而且详细介绍了装配望远镜的经验,使我收益非浅。也是张先生在杂志上发表的多篇文章特别是《星空观测者》1998-3期上的《北风一吼,满天星斗—漫谈冷空气与天文观测》一文,让我觉得20厘米反射镜正是我所需要的望远镜,非常值得下功夫去做。
我前后花了3个月的时间,投资累积约800圆(这些钱可能还买不到一架8厘米地平式折射望远镜)完成了这架口径20厘米焦距107厘米的道布森结构的牛顿式反射望远镜。其实国内介绍怎样制作反射式望远镜的文章已经相当多了(杨世杰老师曾在《天文爱好者》上连载六期,系统介绍了反射望远镜的制作方法,另外,各地同好介绍制作经验的文章也常有发表),我写此文,对于没有制作反射镜经验的同好,是想说明在一般所能达到的加工条件下,到底花多少时间投多少钱可以得到一架什么性能的望远镜,对于制作过反射镜的同好,则希望可以交流经验,特别是在如何调整反射镜光轴方面,国内文章谈论的不够细致,我从互联网上借鉴了一些国外天文同好的经验,再加上我的实践体会,写出来与各位同好探讨。
本文的重点是镜身的装配和光轴的调校。有一些零件的加工用到了车工和钳工,如果不具备此条件,因地制宜使用别的方法,同样也能达到目的。另外,大口径短焦比的望远镜对光轴的准确度是很敏感的,而望远镜做好后如果拉到野外去观测,很难保证调好的光轴一点不受影响,所以设计望远镜光路中的每一个部件时,在保证稳固的基础上都力求做到可方便调节。
一、镜身的装配
牛顿式反射望远镜的镜身(结构见下图)主要由镜筒、主镜、副镜和目镜构成,下面就分别说说镜筒、物镜座、副镜支架和目镜调焦座的设计与制作。


4. 回答人: 匿名 时间: 07-15 11:41:23
牛顿式反射式天文望远镜制作

牛顿式反射式天文望远镜制作讲义(文字部分)
讲义编写:台大物理 吴俊辉,王绍权,陈宣槐,黄郁升
网址:http://www. phys.ntu.edu.tw/lclab
一,主镜的研磨
研磨的的磨粉大小从46,80,120,240,500,1000到2500,材料是氧化铝.因为镜子的材料BVC较软的缘故,所以磨粉号数可以两倍的速度更换(例:120->240).若是较用较硬的玻璃材料,一次就只能变1.5倍(例:120->180).
A. 工作平台:
因为磨程中多余的水和磨粉会流到桌上,故在桌子一角铺上报纸后再垫上橡皮垫,保护镜子与工具.
B. 研磨方式:
双手掌心的连线通过镜心,四指靠在镜边缘,握太外面或太里面(太上或太下)都不好施力,磨的时候掌心不能超过底下的工具.范围约前后1/6~1/4个直径,不能超过1/3,两手的力量最好一样,边磨边向下施力.前后磨的路径要直,不要左右晃.
C. 一个程序:
先进行一个小程序:前后来回磨4~6次,逆时针旋转镜子约 45度,握着镜子人顺时针转约30度.重复小程序至人顺时针走到底,再继续小程序,唯换成握着镜子逆时针转30度.重复至人逆时针走到底,即完成一个程序.
D. 程序与程序间:
工具逆时针转约45度.若感觉已无摩擦力,则要加磨粉和
1
水.把镜子拿离工具时,要注意不能让工具边缘磨到镜子中心,要注意:致命的刮痕都是在拿镜子的时候造成的.
E. 加磨粉:
磨粉一汤匙,用水将粉充分喷湿,喷散.镜子放上工具后,镜子的圆心绕工具的圆心绕几圈,使磨粉均匀后在开始磨.用奶粉的汤匙舀磨粉有异常的妙用,汤匙底部有小洞,可以慢慢的让磨粉流出来,这样便可以均匀且少量的洒在镜面上.当工具和镜面接触良好时,磨粉便要慢慢减少,因为颗粒越小的磨粉越容易粘成大的团块,易刮伤镜面
F. 要注意干的磨粉:
干的磨粉颗粒会凝结变大,会严重刮伤镜子,磨镜时不能使手上和镜子边缘干的磨粉掉到工作范围内.手脏不应搓手,而用水桶洗手的方式.
G. 测试曲率的方法:
三角仪的半径是2公分,测的时候要稍微移动位置,测到当地最高的值才是正确的(因三角仪的圆周一定是靠在镜面突起的部分).磨到2500的磨粉后,要用Ronchi test(做法见上学期报告)才能看出差别,因三角仪的精确度只有0.01公分.表面的均匀程度可用肉眼或辅以手电筒即可观察出来,换另一号磨粉前需要将表面都磨制均匀.
H. 修正曲率方式:
磨镜时的位移若小一点(1/6以下)是均匀的磨到整个镜面,同时改变整个镜子的曲率;大一点时(1/6~1/3)则是重点磨深,局部影响曲率.镜子在上工具在下时研磨到镜子中央,相反则研磨到边缘.例如镜子在上时用大的位移则会让中央部份磨深.依2照三角仪或Ronchi test测定的镜子曲率,来作不同的修正.
I. 环境的清洁:
换磨粉之前,或是前一次工作相隔时间长,就必须作清洁的工作.地板,磨镜的桌子,柜子都用抹布和除尘拖把仔细清过一遍,不能有前次的大磨粉残留,会刮伤镜片.镜子,工具和垫子也都用牙刷,牙膏仔细刷洗过.
用空罐子把磨粉分装,从小的开始再装大的,因为大磨粉里参有小磨粉也不会刮伤镜片.分装好的磨粉不要全放在一起,分开放置不同的柜子较不易污染.柜子还需要一个塑胶布来挡住,以免有外来颗粒入侵.使用时要用更小的药罐先分装,不要重复接触大罐子,使表面有磨粉的机率增加. 厨房纸巾和静电布要收藏在箱子里,要用时一次拿一张,以免沾上磨粉.换磨粉时最好也换一卷纸巾.
J. 防止镜边缘破碎:
用炒菜锅乘水和46号磨粉把镜子的边缘磨掉约4mm,用完后磨粉和剩下的水都不须清干净,这样湿润的磨粉较不易飞散,再直接放到测试桌下面的纸箱内收妥.要随时注意边缘会不会太尖,以防碰撞而破碎.
K. 若工具和镜子吸住推不开:
研磨时要随时注意水是否太少,不然工具和镜子间的摩擦力和吸附例会太大以致于分不开.解决办法有很多种.若从透明的工具看进去,中间的水还没有干掉,表示转不开是由于周围干掉,可从上面对工具中间加压,把中央有水的部分压开,分散附着力,同时在用手转(不能用扳开的方式,以防危险),就可以转开.若还不行,就表示整个水分都快干掉的,可以把镜子和工具一起放到约五十度热水中,利用两者膨胀系数的不同(BVC几乎膨胀系3数为零),即可拆开.
L. 刮痕:
通常是干掉的磨粉或是前一程序的残留磨粉造成的.当磨粉很细时,会飘散到空中,所以清洁工作要很彻底,甚至连身上都需要先用除尘纸擦过.若有刮痕,可用手电筒观察其深度,通常可以在下一个阶段的磨粉可以被淡化,但无法消除.只要不是太严重,事实上对光学表现不会影响太大.所以通常不会为了一条刮痕再增加该磨粉的磨程时间.
二,主镜的抛光
抛光通常和研磨一样需要很多个磨粉的流程,但这次我们只有用一种大小的氧化铯,所以花的时间会较长.此外,原来工具的玻璃材料对抛光来说太粗糙,所以要在原来工具的表面在铺上一层沥青.
A. 氧化铯磨粉:
因氧化铯比奶粉还要细,会粘着任何容器,所以不易用汤匙拿取.因此把它和水1比4溶在装西红柿酱的瓶子里,直接用磨粉水的形式代替分别加磨粉和水,使用时要先摇晃均匀,使瓶子底部没有磨粉沉淀.
B. 沥青工具的制作:
我们用有把柄的锅子和高山瓦斯炉将沥青融化.融化的沥青很像麦芽糖(这次用的是比较高级的沥青,外表是黄色的.沥青是混合物,其中成分的比例会影响他的软硬度和色泽),加热要用非常小的火,一来因为沥青的熔点很低,二来加温太高会产生非常多气泡,使液体成分蒸散而改变成分比例.表面的一层泡沫可
4
以用汤匙挑掉,一边加热一边要用筷子将底部融化的跟上层未熔的搅拌.
工具的边缘用厚胶带贴一圈,高出表面3公分左右,再把沥青倒入,量约1公分厚才足够,用筷子把气泡挑掉.约五分钟后(是沥青干的程度),用铁棍将表面压成格子状,把镜子表面涂满氧化铯溶液(镜子要稍微用吹风机加热,以免镜子和工具的温度相差太多让沥青瞬间凝固),压到工具上,人再压上去约15分钟,将沥青压成和镜子曲率一样.镜子拿开后用磨粉的附着状况判断曲率(通常是中央没被压到,所以中间会没有粉红色的磨粉黏着),曲率未到可放到热水中加热工具,然后再压一次. 压好后工具的边缘用榔头敲掉,使沥青的面积小于镜子,压的时候才不会有大于镜面的部份压不到而突起.沥青碎片可稍微清一下,但因质地很细,就算有残留也不会磨伤镜子.
C. 工作平台:
防滑垫因为有弹性会抵销力量,所以要换成用厚木板垫底,上面作四个木块刚好夹住工具,再用两个C型夹把木板固定在桌角.木块的高度要小于工具的,这样工具上的镜子才能有位移.工具和木块间的空隙用小的锲型木块塞住,磨的时候才不会前后动或是转动.
D. 抛光方式:
用氧化铯抛光时,附着力明显大于以前任何一种磨粉,非常难移动镜子.磨粉水很不容易流失,因为有沟槽的关系,所以就算磨一整圈也不用加磨粉水.最好都以镜子在上的方式抛光,这样若有大颗粒的东西才容易从工具的勾槽流掉,镜子在下容易刮伤.此时的位移只需要1/6,因为是整体抛光的关系,不用大位移来加强局部.因为镜子在上,所以边缘会比较难磨到,用直线来回磨几次后可改为W行的磨法,增加边缘磨的机会.
5
E. 沥青工具的校准:
隔一两天以上重新要磨之前都需要再校准工具的曲率,把工具放到热水加热,再用人的重量压20分钟.但施压的人不可左右晃动,否则工具的边缘曲率会太大超过预期,这样抛光的时候,边缘会接触不到,只有镜子中央被抛光.
F. 测试曲率的方法:
一开始可用Ronchi test测镜面和目标球面相差多少,再改变工具和镜子的位置,或是位移的大小来修正.最后用W型磨法抛物面化后(抛物面化只要约半小时,因球面和抛物面相差甚少),可用Foucault test测其抛物面化的程度.
三,一般预期工作成果
以口径32cm的镜片为例,主镜研磨和抛光的过程,研磨需约27个程序(46磨粉-3次,80磨粉-9次,120-7,240-2,500-2,1000-2,2500-2),抛光约20个程序,各需18到20个小时,因此实际的磨镜时数近40个小时可完成(不包含所有准备与清洁时间).镜面可能会有几处刮痕,但应不影响未来的整体表现.整体镜面的误差可用Foucault test的软体来计算,一般若控制在1/8个可见光波长以下,已算是非常优良的表现,本实验室的技术可达到1/20个可见光波长
的准确度约为25奈米.之后主镜镜面蒸镀时,镀铝约100 ~200nm两层,和一层二氧化硅作为保护.
望远镜本体:
大部分采用铝门窗的铝制材料,座台使用Dobsonian的设计,目镜座则用Crayford的设计,斜镜架,目镜架,主镜架都有三点微调6机制,可以调整斜镜目镜与主镜的平面倾斜度,以调整光轴.
望远镜能力
D(口径) = 31.1cm
F(焦距) = 146.75cm
F-ratio(焦比)= 4.72
P(集光力)= 1974
M(极限星等)= 14.7
FOV(视场)= 0.35度
解析力 = 0.41角秒
极限倍率 = 约44倍 ~ 550倍
适合搭配的目镜约33mm-3mm
注:关于制作过程之图片资料,可由以下网站下载:
http://jhpw.phys.ntu.edu.tw


5. 回答人: 匿名 时间: 07-07 00:16:06
一、问题的提出

对于每一个喜爱科学,尤其是喜爱天文学的人,望远镜自是一种最令人向往的科学仪器。每逢晴朗的夜晚,面对着浩瀚的宇宙,那千姿百态、五颜六色的天体是多么令人神往啊!在这个时候,谁都希望自己有一架小型的天文望远镜,用来看看月亮上的环行山、金星的盈亏、土星的光环、木星的卫星、火星上的极冠以及仙女座大星云、猎户座大星云等等。这样的望远镜最好是自己动手做。在科学技术高等发达的今天,无论是从理论方面,或是从技术方面看,每一个有志于天文观测的爱好者,自己制作天文望远镜是完全可以做得到的。

二、研究目的

通过自制天文望远镜,了解并掌握望远镜的基本光学知识,学会自制简单小型的开普勒式折射望远镜。培养自己的动手动手能力。而且当掌握了这门技术之后,就能更主动的在天文科学领域中发挥自己的特长。

三、研究内容

天文望远镜有许多种类。可是,从制作技术、经济条件和使用特点等方面考虑,对于业余天文爱好者比较合适的,要算是简单小型伽利略式折射望远镜、简单小型开普勒式折射望远镜等。我们所研究、制作的望远镜是开普勒氏折射望远镜。

1.自制望远镜的基本光学知识

1)光学元件的成像原理

开普勒氏折射望远镜所采用的光学元件,主要是凸透镜。为了讨论方便,首先需掌握几条定义:

顶点:镜面的中心,叫做镜面的顶点。

曲率中心:球面法线的交点C,叫做镜面的曲率中心。

曲率半径:由镜面曲率中心C到镜面上的距离,叫做曲率半径。

主平面和主点:有时为了简化光学系统成像的作图方法,在光学系统中另设立两个特殊的垂直于主光轴的平面,即如果光线进入到光学系统内,与第一平面MN相交于距离主光轴h点M,那么,在光线从光学系统出来时,与第二个平面M’N’ 相交的点M’,仍然与主光轴具有的距离。这两个平面,称为第一主平面和第二主平面。第一主平面和主光轴的交点,称为第一主点;第二主平面和主光轴的交点,称为第二主点。如图1的N和N’两点。这样,从主点到光学系统的第一、第二焦点F和F’点的距离,就是光学系统的第一焦距和第二焦距。对于薄透镜来说,两个主平面是重合的。

节点:当与主光轴成一定倾角u的一组平行光束入射时,出射光束将集中交于像方焦平面上一点B’;而从光学系统射出的光束中,必须能够找到一条光线P’B’,与入射的某一条光线PB平行。同时,PB和P’B’光线必定分别交于第一主平面和第二主平面上与主光轴距离相等的P点和P’点上。PB和P’B’光线与主光轴的交点K和K’,便称为节点,如图2。同理,凡过节点K的任何入射光线,都必定有一条与之平行的共轭出射光线通过K’点。对于两面共轭的薄透镜来说,如果透镜两面介质相同,那么两主点和两节点都与透镜中心重合。这就是透镜的光心。故而一般作图分析薄透镜成像时,为了方便,可用透镜主平面代表薄透镜。过光心光线,射出透镜之后,其前进的方向不变。

当一束平行于主光轴的入射光线穿过透镜,并经过凸透镜折射之后,一般都会聚在第二焦点F’(实焦点)。而经过光心O的光线,穿过透镜后,其前进方向不变,两条光线会聚的地方B’,便是物体成像的位置,如图3。

在天文爱好者的望远镜中,用薄透镜制作普及型小望远镜,既简单,又能初步满足天文爱好者对望远镜质量的要求。因此,用薄透镜的光学成像图解方法,帮助解决天文望远镜的设计问题,是十分方便的。

在实际应用中,由于每个透镜都是放置在空气中的,而空气的折射率为l,如果透镜所用的玻璃折射率以n表示,那么透镜的两个折射表面曲率半径r1和r2与透镜的焦距f之间的关系,可用下面公式表示,即:

1/f=(n-1)*(1/ r1+1/ r2) (1)

这就是薄透镜的焦距公式。

对于由同一发光点发出的无数条光线中,根据光的折射定律和透镜的光学性质,我们可以知道必然有如下三条特殊光线通过透镜后的方向是可以确定的。

a)平行于主光轴的近轴光线经过凸透镜后必然通过实焦点。

b)通过凸透镜实焦点的光线,由于光的可逆性,光通过透镜后必定与主光轴平行。

c)薄透镜的主点、节点都与透镜中心重合时,这中心可近似地作为透镜的光心。通过光心的光线其前进方向可当作无折射通过。

物像实际上是物体上无数发光点元被透镜折射后重新会聚成点元像的集合体。根据这个原理,物体上任一点元发出的光线中,任何两条确定光线被透镜会聚成点元像的位置,如图4,便是物像所在的位置。当位于焦点外物体AN在A点发出的光,经透镜后,平行于主光轴的光线必定通过实焦点F;而过光心的光线,经过透镜后传播方向不变,从而得到物体成像的位置A’N’。

设透镜的焦距为f,垂直于光轴的物体与透镜的距离为u,成像位置与透镜的距离为v,从图4中知道,因为△NAO和△A’N’O中,∠AON=∠A’ON’所以两直角三角形是相似的,有:

AN:A’N=NO:N’O (2)

设B为入射光线和通过透镜后出射光线的交点,对于薄透镜来说,BO可以看作为垂直与光轴NN’的线段(见图4)。因此△BOF和△A’N’F也是相似三角形,有:

BO/A’N’=OF/FN’ (3)

因为BO=AN,所以AN:A’N’=OF:FN’,代入(2)式得:

NO:N’O=OF:FN’ (4)

因为NO=u,N’O=v,OF=f,FN’=v-f,代入(2)式得:

u:v=f:(v-f),即u(v-f)=vf,两边同时除以uvf,得:

1/u+1/v=1/f (5)

这就是透镜成像公式。与公式(1)联系在一起,就得到薄透镜的物像公式:

1/f=1/u+1/v=(n-1)*(1/r1+1/r2) (6)

从此式知道,只要事先获得透镜的焦距f或者物距u和像距v,以及设计透镜前确定的任何一个曲率半径r1(或r2),我们就可以非常方便的求出透镜的另一个曲率半径r2(或r1)。

2)透镜的各种像差

光学元件或光学系统本身常常由于这样那样的物理原因,或者材料的、工艺的种种缺陷,使得实际的光学系统在成像上存在着种种误差,这种误差被称为像差。

根据产生的原因,像差大致可以分为单色光像差和多色光像差(简称色像差或色差)两种。

单色光像差:

a)球面像差

来自主光轴上物点S的一束单色光线,经透镜折射之后,交于主光轴上不同的位置。距离透镜中心O点越远的光线 a,折射后交于主光轴上的点S’离透镜中心O点就越进;反之,即越远,如图5。而S’和S’’之间的距离,叫透镜产生的球差。可用:LA=S’-S’’表示,式中LA为光学透镜的球差值。当LA=0时,球差完全消除。一般说,一个单透镜只要满足条件:r1:r2=(4+n+2n2):[n(1+2n)]时,对于无限远处的物点成像,将可以获得最小的球差。式中r1和r2为透镜的两个曲率半径,n为透镜镜玻璃的折射率。

b)慧形像差

不在主光轴上的一物点所发出的光线通过透镜的中央部分和边缘部分,不能同时造成同一像点,而是越近透镜中心的光线,所成的像也越近光轴,弥散率比较小,而离透镜中心较远的光线,所成的像离主光轴也较远,弥散率也越大,从而使物点的像成为一个慧形形状的图形,叫慧形像差,如图6。这种像差,对于望远镜来说影响较大。为减少它的影响,往往使望远镜的可用视场变小。

c)像散

对于离主光轴较远的物点发出的光线,经透镜所造的像,在主光轴外距透镜远近不同的两个位置上,不是成一个点像,而是形成两条互相垂直的线段,线段之间成像模糊,这种现象,叫像散。如图7,由于望远镜的视场(视场是指在望远镜里看到的天空范围)不大,因此一般影响较小。

d)畸变

当一个垂直于主光轴上较大的物体,经光学系统成像以后,虽然物体各部分的像都很清晰,但物体像的各部分垂轴放大率(即垂直于主光轴上的像和垂直于主光轴上的物体长度的比)都不同,有的地方的放大率高一点,有的地方的放大率小一点,这种现象叫畸变.

多色光造成的像差,主要是由于透镜光学介质对不同颜色光的折射率各不相同,从而使不同颜色的光线成像的位置也不同.这种现象叫做位置色差,见图8。如果透镜对于不同颜色光线所成的像的放大率各不相同,这种现象,叫做放大率色差(或叫垂轴色差)。

在制作天文望远镜时,必须注意对望远镜光学质量影响最大的像差。

2.制作望远镜

1)结构和光路

简易天文望远镜由物镜、物镜镜筒、目镜、目镜镜筒等组成,如图9所示。它的物镜和目镜都是凸透镜。

这种望远镜的光路如图10所示,假设用这个望远镜观测天体AB,由于天体非常远,天体射来的光线都可以看作是平行光。天体的光线通过物镜后会聚到物镜的后焦点上,形成一个倒立的天体实像A’B’。目镜的前焦点刚好同物镜的后焦点重合。天体的实像A’B’的光线经过目镜变成平行光,射到观测者的眼睛里,观测者看到的是成像在无限放大了的天体A’’B’’。

设计简易天文望远镜,有三个指标是需要认真考虑的。

a)放大率。由光路图可以看到,用眼睛直接观看天体AB,视角只有α,通过望远镜观看这个天体,视角就变成β,显然,天体的视角放大了。只要经过简单的推算就可以证明,望远镜的放大率M等于物镜焦距F同目镜焦距f的比:M=F/f。从这个式子可以看到,物镜的焦距越长,目镜的焦距越短,望远镜的放大率就会越大。一般来说,目镜的焦距不能太短,否则会产生严重的像差。物镜的焦距也不能太长,否则在望远镜里看到的天空范围太窄小。

b)相对口径。相对口径是反映望远镜聚光本领的指标。相对口径A等于口径D同物镜的焦距F的比:A=D/F。相对口径大,在望远镜里看到的天体就明亮;相对口径小,在望远镜里看到的天体就灰暗。从上面的式子可以看到,如果物镜的焦距不变,物镜的口径越大,相对口径就越大。因此,为了在望远镜里看到的天体更明亮一些,需要找口径较大的凸透镜做物镜。

C)视场。视场是指在望远镜里看到的天空范围。一般来说,物镜的焦距越长,放大率就越大,但视场会越小,看到的天空范围就会越窄小。视场太小,在望远镜里寻找要观测的天体会很困难。

2)制作方法

a)选择物镜和目镜。买来的物镜测定焦距,把物镜对着太阳,在镜片的另一侧放张白纸板,前后移动白纸板,使太阳在白纸板上成像清晰。用直尺量出镜片到白纸板的距离,这个距离就是镜片的焦距,为17.8厘米。目镜的焦距已测得,是2厘米。

b)设计镜筒。为了便于调节焦距,以适应视力不同的人观测,整个镜筒做成两节,一节是物镜镜筒,一节是目镜镜筒。它们都用黄纸板(马粪纸)制作。物镜镜筒的直径约等于物镜的直径,物镜镜筒的长度约等于物镜的焦距。目精镜筒的直径约等于目镜的直径,目镜镜筒的长度比目镜焦距长50~80毫米。目镜镜筒的外径等于物镜镜筒的内径,使得目镜镜筒既能插入物镜镜筒,又能贴得比较紧,便于前后调节焦距。

c)物镜镜筒的制作。先找一根长度稍长于物镜焦距、直径约等于物镜直径的圆管做芯柱。

物镜镜筒用黄板纸条卷绕两三层制作。先把黄板纸切成70~80毫米宽的纸条。其中准备做第一层的黄板纸条,一面涂上墨,等墨干透后就可以卷镜筒了。注意墨面朝里,以消除杂散光。

在芯柱上卷绕黄板纸条的时候,纸条一圈紧挨一圈,不能有间隙,也不能重叠。在镜筒的两端和纸条的接头处,要用涂有浆糊或胶水的牛皮纸固定好。第一层卷好后,在第一层外面涂上浆糊或胶水,然后卷绕第二层。为了粘得更牢,第二层的黄板纸条里面也涂上浆糊或胶水。第二层的卷绕方向和第一层相反。第三层的卷绕方向和第二层相反,和第一层相同。一般卷三层黄板纸就足够了。镜筒的最外面糊上一层牛皮纸。镜筒卷好后稍晾一会就要把芯柱抽出,然后竖直放在室内彻底晾干。

镜筒卷得比需要稍长一些,卷好晾干后再用锋利的刀截成需要的长度。

d)目镜镜筒的制作。找一根直径约等于目镜的圆管做芯柱。目镜镜筒的卷绕方法同物镜镜筒基本相同,但目镜镜筒的外径等于物镜镜筒的内径。当目镜镜筒外径卷绕到已经接近物镜镜筒内径的时候,通过糊牛皮纸来逐渐达到要求。

e)镜片的安装。这一程序较麻烦。根据镜片和镜筒的具体情况采用不同的方法。如图11,我们所制作的望远镜镜片直径小于镜筒内径。,为了把镜片固定在镜筒中,我们分不同情况附加镜片套筒。另外,在目镜镜筒的末端,加一段卷纸,以免整个目镜镜筒滑进物镜镜筒。

安装镜片的关键就在于使物镜和目镜的主光轴都落在镜筒的中心线上。这是我们制作望远镜的又一个难点。为此,在镜片没有完全固定好之前,进行了简单的调整。对于物镜,把初步装上物镜的物镜镜筒对着远处的灯光,在物镜镜筒上没有物镜的一端蒙上一层半透明纸,使远处灯光通过物镜成像在半透明的纸中央。然后不改变物镜镜筒的放置方向,转动镜筒,如果远处灯光的像始终落在半透明纸的中央,说明物镜的主光轴落在镜筒的中心线上。就可以把物镜固定下来。否则就需要适当调整物镜位置,直到符合要求为止。

物镜调整好之后,就把物镜镜筒的半透明纸撕掉,把初步装上目镜的目镜镜筒插入物镜镜筒内。整架望远镜仍然对准远处灯光,并用眼睛观测。前后调节目镜镜筒的位置,使远处灯光落在望远镜看到的视场中央。然后使物镜镜筒不动,单转动目镜镜筒,如果远处灯光始终在视场中央,说明目镜的主光轴落在镜筒的中心线上,至此可以把目镜固定下来。

一架简单的小型开普勒式折射望远镜就做成了
(以上观点仅代表回答人观点,不代表本网站观点)
 

最新知识>>>
.请问今天的天文现象是什么?
.90 1200天文望远镜观察月亮效果
.什么是天文时间?
.有中国的天文爱好者名字命名的
.从哥白尼到牛顿的天文学革命是
.请问天文爱好者应该使用什么样
.请介绍天狼天文望远镜生产厂家
.请问天文台建在山上的原因?
.请问宁波哪里有天文望远镜专卖
.不能用天文望远镜直接观察的是
 
美国博士能Bushnell 天文望远镜788840 1300x100 天文地景两用 折反射式天文望远镜
IT88价:¥8890(含运费)
美国Tasco SpaceStation 70x800 折射天文望远镜 49070800 红点寻星镜
IT88价:¥1980(含运费)
tasco天文望远镜 49114500 反射式天文望远镜
IT88价:¥3080(含运费)
美国tasco天文望远镜 40060675 60×675mm
IT88价:¥2280(含运费)


Beijing CCIT e-commerce Company
北京中视互联公司
IT88户外光学商城
All Rights reserved

北京市海淀区数码大厦A座1111(地铁人民大学站)
010-5722.1003 18600872982

京公海网安备
110108000044号